9.2 Measures of Variation

Definition 1. Given a set of data x_1, x_2, \dots, x_n , the **range** is the length of the smallest interval that contains all of the data. That is, the largest value minus the smallest value.

range =
$$\max\{x_1, x_2, \dots, x_n\} - \min\{x_1, x_2, \dots, x_n\}$$

1. Find the range of the following data set.

2. Find the range of the following data set.

$$61.6332$$
, 79.4085 , 68.3606 , 55.4502 , 31.8612 , 40.5185 , 64.1433 , 88.1797

3. Show that the following two data sets have the same range.

Data set
$$A = 1, 5, 5, 5, 5, 5, 5, 9$$

Data set $B = 1, 1, 1, 1, 9, 9, 9, 9$

Definition 2. Given a data set x_1, x_2, \dots, x_n with mean \overline{x} , the corresponding set of **deviations from the mean** is

$$x_1 - \overline{x}, \quad x_2 - \overline{x}, \quad \dots, \quad x_n - \overline{x}$$

and the corresponding set of deviations from the mean squared is

$$(x_1-\overline{x})^2$$
, $(x_2-\overline{x})^2$, ..., $(x_n-\overline{x})^2$.

Definition 3. For a sample of n measurements x_1, x_2, \ldots, x_n with sample mean \overline{x} , the **variance** of the sample is

$$s^{2} = \frac{\sum (x - \overline{x})^{2}}{n - 1}$$
 (classic)
$$= \frac{\sum x^{2} - n\overline{x}^{2}}{n - 1},$$
 (alternative)

and the standard deviation of the sample is

$$s = \sqrt{s^2} = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$
 (classic)
$$= \sqrt{\frac{\sum x^2 - n\overline{x}^2}{n - 1}}.$$
 (alternative)

4. Given the following sample data,

calculate the variance and the standard deviation of the sample using *both* formulas given above.

5. Find the standard deviation for the sample data summarized in the table below.

Interval	Frequency
0-24	4
25-49	8
50-74	5
75 –99	10
100 - 124	4
125 –149	5

Theorem 1 (Chebyshev's Theorem). Given any set of measurements x_1, x_2, \ldots, x_n , and any number k > 0, the proportion of measurements that lie within k standard deviations of the mean is at least

$$1 - \frac{1}{k^2}.$$

- 6. Given a sample of 300 measurements with mean $\overline{x} = 72$ and standard deviation s = 7, use Chebyshev's Theorem to answer the following questions.
 - (a) At least what proportion of measurements lie between 58 and 86?
 - (b) At least how many measurements lie between 51 and 93?

Finite Mathematics