Basic Probability & Conditional Probability $_{\S7.3-5}$

Set formulas:

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$
$$A = (A \cap B) \cup (A \cap B')$$

Probability formulas:

$$P(A) = \frac{n(A)}{n(S)}, \text{ when all possible outcomes in } S \text{ are equally likely}$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) + P(A') = 1$$

$$P(A) = P(A \cap B) + P(A \cap B')$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \iff P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$$

- 1. On a winter day, there are 50 children playing in a schoolyard. Thirty-five are wearing a hat, 25 are wearing gloves, and 10 are wearing neither a hat nor gloves. Suppose one of the children is selected at random.
 - (a) What is the probability that the child is wearing a hat?
 - (b) What is the probability that the child is wearing a hat and gloves?
 - (c) What is the probability that the child is wearing a hat, given that they are wearing gloves?
 - (d) What is the probability that the child is wearing gloves, given that they are wearing a hat?
- 2. On days that it rains, the probability that the professor arrives late to class is 25%. On days that it doesn't rain, the probability that the professor arrives late to class is 5%. What is the probability that the professor arrives late to class given that the probability of rain is...
 - (a) 15%?
 - (b) 85%?
- 3. An experiment consists of flipping a coin twice. What is the probability of flipping two heads ...
 - (a) given that the first flip is heads?
 - (b) given that at least one of the flips is heads?
- 4. Two cards are selected from a standard deck without replacement.
 - (a) What is the probability that both cards are diamonds?
 - (b) What is the probability that one card is an ace and the other card is a face card?
- 5. A randomly selected individual is tested for a disease that 0.5% of the population has. The probability that the test gives a false-positive is 0.1% and the probability that the test gives a false-positive is 10%.
 - (a) What is the probability that the individual does not have the disease and tests positive?
 - (b) What is the probability that the individual has the disease and tests negative?

09/18/2022 adamski@fordham.edu

Definition: Events A and B are *independent* if and only if

$$P(A|B) = P(A), \quad P(B|A) = P(B), \quad \text{or } P(A \cap B) = P(A)P(B).$$

The three equations above are all equivalent – they are either all true or all false.

6. An experiment can result in none, one, or both of the events A and B with the probabilities shown in the following table.

$$\begin{array}{c|cccc} & A & A^c \\ \hline B & .24 & .16 \\ B^c & .36 & .24 \\ \end{array}$$

- (a) (2 points) Find P(A).
- (b) (2 points) Find P(A|B)
- (c) (3 points) Are A and B independent?
- (d) (3 points) Are A and B mutually exclusive?

7. Suppose P(A) = .2 and P(B) = .3. Fill in each of the tables below with probabilities such that

(a) A and B are independent.

$$\begin{array}{c|cc}
 & A & A^c \\
\hline
B & & \\
B^c & & \\
\end{array}$$

(c) A and B are not independent and not mutually exclusive.

$$\begin{array}{c|cc}
 & A & A^c \\
\hline
B & & \\
B^c & & \\
\end{array}$$

(b) A and B are mutually exclusive.

$$\begin{array}{c|c}
 & A & A^c \\
\hline
 & B \\
 & B^c
\end{array}$$

- 8. A college student frequents one of two coffee houses on campus, choosing Starbucks 70% of the time and Dunkin Donuts 30% of the time. Regardless of where she goes, she buys a cafe mocha on 60% of her visits.
 - (a) The next time she goes into a coffee house on campus, what is the probability that she goes to Starbucks and orders a cafe mocha?
 - (b) Are the two events in part a independent?
 - (c) If she goes into a coffee house and orders a cafe mocha, what is the probability that she is at Dunkin Donuts?
 - (d) What is the probability that she goes to Starbucks or orders a cafe mocha or both?
- 9. (a) Two people enter a room and their birthdays (ignoring the year) are recorded.
 - i. What is the probability that both people are born on 1/1?
 - ii. What is the probabiltiy that they have the same birthday?
 - iii. What is the probability that they have different birthdays?
 - (b) If n people enter a room, find the probabilities of the events

A = None of the people have the same birthday

B = At least two of the people have the same birthday

i.
$$n = 3$$

ii.
$$n = 4$$

iii.
$$n = 35$$