Math 1100.L02 - Finite Mathematics

Please put away all papers and electronic devices except a calculator. Show enough work that it is clear how you arrived at your answer. Round decimal answers to four decimal places. Box/circle your final answers. Good luck!

1. (4 points) Fill in the correct frequencies in the frequency tabel below based on the following data.

31	32	5	3	2	9	10	15	43	12
7	28	39	11	46	18	20	37	49	0

Interval	Frequency			
0-9	6			
10-19	5			
20-29	2			
30-39	4			
40-49	3			

2. Consider the following set of data.

(a) (4 points) Compute the mean \overline{x} , and show how you arrived at your answer.

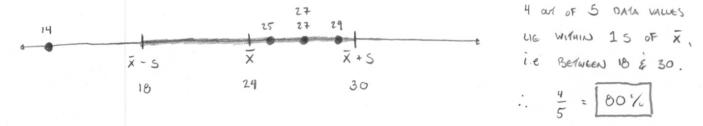
$$\bar{x} = \frac{2x}{n} = \frac{29 + 27 + 14 + 23 + 27}{5}$$

$$= \frac{120}{5} = 24$$

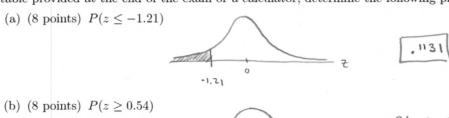
(b) (4 points) Compute the median.

(c) (4 points) Compute the mode.

(d) (4 points) Compute the range.

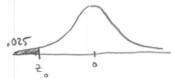

(e) (4 points) Compute the variance s^2 , and show how you arrived at your answer.

×	× - ×	(x - x)2	K	×	x	\(\frac{1}{2} = \frac{7}{2}
29	5	25	52 = (x - x)2	29	841	$s^2 = \frac{\sum x^2 - n \overline{x}^2}{\sum x^2 - n \overline{x}^2}$
27	3	9	n ~ 1	27	729	n - 1
14	- 10	100	144	14	196	= 3024 - 5 (576)
13	-1		= 199	23	529	
27	3	+ 9	4	27	729 +	4
	1	144	= 36		3024	= 36


(f) (4 points) Compute the standard deviation s, and show how you arrived at your answer.

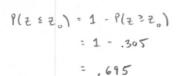
$$5 = \sqrt{5^2} = \sqrt{36} = 6$$

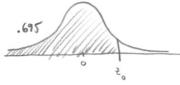
(g) (4 points) What percentage of the data values lie within 1 standard deviation of the mean?



3. Let z be a random variable with the standard normal probability distribution ($\mu = 0, \sigma = 1$). Using the table provided at the end of the exam or a calculator, determine the following probabilities.

(b) (8 points)
$$P(z \ge 0.54)$$


- 4. Let z be a random variable with the standard normal probability distribution ($\mu = 0$, $\sigma = 1$). Use the table provided at the end of the exam or a calculator to answer the following questions.
 - (a) (8 points) Determine the value z_0 such that $P(z \le z_0) = .025$.



(b) (8 points) Determine the value z_0 such that $P(z \ge z_0) = .305$.

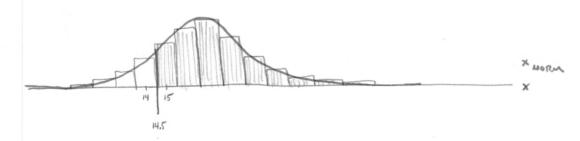
- 5. Suppose that you must establish regulations concerning the maximum number of people who can occupy an elevator. A study indicates that if eight people occupy the elevator, the probability distribution of the total weight x of the eight people is normally distributed with a mean $\mu = 1200$ pounds and a standard deviation $\sigma = 99$ pounds.
 - (a) (8 points) What is the probability that the total weight x of eight people exceeds 1425 pounds?

$$P(x \ge 1425) = P(z \ge \frac{1425 - 1200}{99}) = P(z \ge 2.27)$$

$$= 1 - P(z \le 2.27)$$

$$= 1 - .9884$$
(CALCULATOR ANSWER: .0115

(b) (8 points) Determine the value x_0 such that the probabilty that the total weight x of the eight people exceeds x_0 is .001.


FIRST FIND Zo SUCH THAM P(ZZZ) = .001 + P(ZZZ) = 1-.001 = .999

THEN
$$z_0 = \frac{x_0 - \mu}{G} = 7$$
 $3.1 = \frac{x_0 - 1200}{99}$

$$X_{\frac{1}{2}} = 1200 + (3.1)(99) = 1506.9$$
 on 1505.91

6. (12 points) Airlines and hotels often grant reservations in excess of capacity to minimize losses due to no-shows. Suppose the records of a hotel show that, on the average, p=10% of their prospective guests will not claim their reservation (no-shows). If the hotel accepts n=215 reservations and there are only 200 rooms in the hotel, what is the probability that all guests who arrive to claim a room will receive one? In other words, what is the probability that the number of no-shows x is at least 15? Use a normal approximation to the binomial distribution for x to answer this question.

$$P(x \ge 15) \approx P(x_{NORM} \ge 14.5) \qquad 5 = \sqrt{np_0} = \sqrt{(215)(.1)(.9)} = 4.3989$$

$$= P(z \ge \frac{14.5 - 21.5}{4.3989}) = P(z \ge -1.59)$$

$$= 1 - P(z \le -1.59)$$

CALCULATION : 9442