_12/17/2019

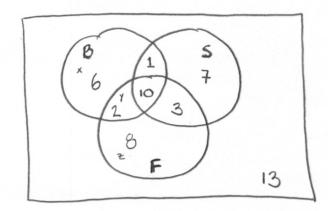
Math 1100-L02: Fintite Mathematics

Final Exam

This exam lasts 2 hours. Please silence and put away your cell phone. You are allowed 1 sheet of notes (front and back) and a calculator. Show enough work that it is clear how you arrived at your answer. Decimal answers should be rounded to 4 decimal points. Put a box around your final answer to each question. Good luck!

1. Consider the following sets.

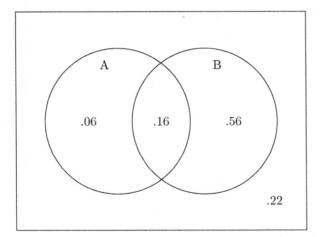
$$A = \{0, 3, 6, 9, 12\}$$
$$B = \{0, 2, 4, 6, 8, 10, 12\}$$


(a) (6 points) True or false:

i.
$$0 \in A$$
 True iii. $0 \subseteq A$ False v. $\{4,8,10\} \in B$ False ii. $\emptyset \in A$ False iv. $\emptyset \subseteq A$ True vi. $\{4,8,10\} \subseteq B$ True

(b) (2 points) What elements belong to
$$A \cap B$$
?

(c) (2 points) What elements belong to
$$A \cup B$$
?


- 2. A small school has a baseball team, a soccer team, and football team. However, the school has only 50 students. Thus, many students play more than one sport.
 - 19 students play baseball
 - ✓ 21 students play soccer
 - 23 students play football
 - ✓ 11 students play baseball and soccer
 - ✓ 13 students play soccer and football
 - ✓ 10 students play all three sports
 - ✓ 13 students play no sports

- (a) (2 points) How many students play only soccer?
- (b) (2 points) How many students play soccer and football, but not baseball?
- (c) (2 points) How many students play baseball and football? 12

3. An experiment can result in events A, B, both A and B, or neither with the following probabilities. (Note: the chart and the Venn diagram are equivalent.)

$$\begin{array}{c|cc} & A & A' \\ \hline B & .16 & .56 \\ B' & .06 & .22 \\ \end{array}$$

(a) (3 points) Find P(A).

(b) (3 points) Find P(A|B).

(c) (3 points) Are A and B independent? Why or why not?

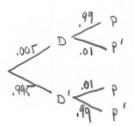
4. (a) (3 points) How many ways are there for a 12 member committee to choose a president, vice-president, and secretary?

3 STAGE EVENT:
$$12 \cdot 11 \cdot 10 = 9(12,3) = \frac{12!}{(12-3)!} = \boxed{1320}$$

(b) (3 points) How many ways are there for a 12 member committee to choose 5 members to serve on a subcommittee?

$$C(11,5) = \frac{n!}{5!(11-5)!} = \boxed{792}$$

5. (6 points) Suppose you randomly select 6 animals from a group of 8 lions, 11 tigers, and 16 bears. What is the probability that you select exactly 2 lions, 2 tigers, and 2 bears?


$$P(21,27,28) = \frac{C(8,2)C(11,2)C(16,2)}{C(35,6)} = \frac{(28)(55)(120)}{1623,160} \approx [.1139]$$

- 6. (6 points) Suppose a test for certain disease is said to be 99% accurate for the following reasons.
 - If a person has the disease, the probability that they will test positive is .99.
 - If a person does not have the disease, the probability that they will test negative (i.e. not positive) is .99.

If the probability that a person has the disease is only .005, find the probability that a person who tests positive for the disease actually has the disease.

FIND PIDIP).

$$b(0|b) = \frac{b(b)}{b(0)b(0)} = \frac{b(0)b(0) + b(0,1b(0))}{b(0)b(0)}$$

7. (6 points) If you roll a regular die (faces: 1, 2, 3, 4, 5, 6) 20 times, what is the probability of rolling a six exactly 4 times?

BINOMIAL GERENINGEST:
$$n=20$$
 $P(x=4) = C(20,4)(\frac{1}{6})^{4}(\frac{5}{6})^{6}$ $P=\frac{1}{6}$ $Q=\frac{5}{6}$ $P(x=4) = C(20,4)(\frac{1}{6})^{4}(\frac{5}{6})^{6}$ $P(x=4) = C(20,4)(\frac{1}{6})^{4}(\frac{5}{6})^{6}$

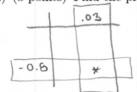
8. A raffle is being held in which 2,000 tickets are sold for \$10 each. There is 1 top prize of \$5,000, 4 middle prizes of \$500 each, and 10 lower prizes of \$100 each. All other tickets receive no prize (\$0). Let x equal the net gain/loss from buying one ticket, that is

$$x = \text{prize money} - 10.$$

(a) (4 points) Describe the probability distribution p(x) by filling in the chart below.

(b) (4 points) Calculate the expected value E(x) for x.

$$E(x) = \sum x p(x) = 4990 \left(\frac{1}{2000}\right) + 490 \left(\frac{4}{2000}\right) + 90 \left(\frac{10}{2000}\right) - 10 \left(\frac{1985}{2000}\right)$$

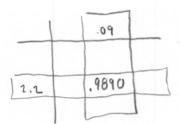

$$= \left[-6\right]$$

- 9. Consider the following set of data.

 80 91 53 53 46 25 92 48 7
 - (a) (2 points) Compute the mean \overline{x} , and show how you arrived at your answer.

$$\bar{x}: \frac{\mathcal{E} \times}{n} = \frac{80+91+53+53+46+25+92+48+7}{9} = \frac{495}{9} = \boxed{55}$$

- (b) (2 points) Compute the median. 7 25 46 48 53 53 80 91 92
- (c) (2 points) Compute the mode.
- (d) (2 points) Compute the range. $\text{MAX MIN} = 92 7 = \boxed{85}$
- 10. Let z be a random variable with the standard normal probability distribution ($\mu = 0$, $\sigma = 1$). Use the table provided at the end of the exam or a calculator to answer the following questions.
 - (a) (3 points) Find the probability $P(z \le -0.83)$

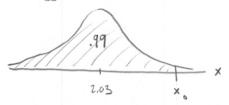

- .2033
- (b) (3 points) Find the probability $P(z \ge 1.44)$

(c) (3 points) Determine the value z_0 such that $P(z \le z_0) = .281$.

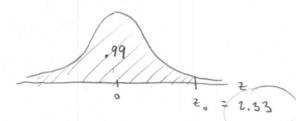
.08	
.281	

(d) (3 points) Determine the value z_0 such that $P(z \ge z_0) = .011$.

- 11. Suppose that the weight of chicken eggs is normally distributed with a mean $\mu = 2.03$ oz and standard deviation of $\sigma = .24$ oz.
 - (a) (5 points) Chicken eggs that weight between 2.15 oz and 2.35 oz are labelled "Extra Large" by the USDA. What percentage of all chicken eggs could be labelled "Extra Large"?


LET X = WEIGHT OF CHICKEN EGG

$$P(215 \le x \le 2.35) = P(\frac{2.15 - 2.03}{.24} \le z \le \frac{2.35 - 2.03}{.24})$$


$$2 P(.5 \le z \le 1.33) = P(z \le 1.33) - P(z \le .5)$$

$$= .9082 - .6915 = \boxed{.2167}$$

(b) (5 points) How much does a chicken egg need to weigh in order to be heavier than 99% of all chicken eggs?

$$\frac{2}{6} = \frac{\times - \mu}{6}$$

12. (5 points) If you deposit \$1,800 into an account earning 2.3% annual interest compunded quarterly, find the account balance (i.e. *compound amount*) after 3.5 years.

$$A = Pr^{2} = 1800 \left(1 + \frac{.023}{4} \right)^{3.5(4)}$$

$$= 1800 \left(1.00575 \right)^{14} \approx \boxed{\$ 1950.44}$$

13. Suppose you currently owe your credit card company \$4,215 and you are being charged 27% annual interest compounded monthly on the amount owed.

(a) (5 points) Find the monthly *periodic payment* necessary to amortize the loan and pay off your credit card debt in 12 equal-sized monthly payments.

$$P = \frac{a(1-r^{-n})}{r-1}$$
 $P = \frac{a(1-r^{-n})}{r-1}$
 $P = \frac{a(1-r^{-n}$

$$\alpha = \frac{P(r-1)}{1-r^{-n}} = \frac{4215(.0225)}{1-1.0225^{-12}}$$

$$\approx \boxed{\$404.71}$$

(b) (3 points) Using your answer to part (a), what is the total amount of all payments made, and what is the total interest paid?